Digital Curation and Preservation: Defining the Research Agenda for the Next Decade

Reagan W. Moore
moore@sdsc.edu
http://www.sdsc.edu/srb
• NARA research prototype persistent archive (SDSC, U Md, NARA)
• NSF National Science Digital Library persistent archive
• NHPRC Persistent Archive Testbed
• NSF/Library of Congress Digital Archive
• California Digital Library - Digital Preservation Repository
• UCSD Libraries image archive
• InterPARES VanMap - GIS preservation
Storage Resource Broker 3.3.1

Application

<table>
<thead>
<tr>
<th>C Library, Java</th>
<th>Unix Shell</th>
<th>Linux I/O C++</th>
<th>NT Browser, Kepler Actors</th>
<th>DLL / Python, Perl, Windows</th>
<th>HTTP, DSpace, OpenDAP, GridFTP</th>
<th>OAI, WSDL, (WSRF)</th>
</tr>
</thead>
</table>

Federation Management

- **Consistency & Metadata Management / Authorization, Authentication, Audit**
 - Logical Name Space
 - Latency Management
 - Data Transport
 - Metadata Transport

Database Abstraction

- **Databases** - DB2, Oracle, Sybase, Postgres, mySQL, Informix

Storage Repository Abstraction

- **Archives** - Tape, Sam-QFS, DMF, ORB
 - HPSS, ADSM, UniTree, ADS
- **File Systems** - Unix, NT, Mac OSX
- **Databases** - DB2, Oracle, Sybase, Postgres, mySQL, Informix

Storage Resource Broker 3.3.1 Applications

- Linux I/O
- C++
- DLL / Python, Perl, Windows
- HTTP, DSpace, OpenDAP, GridFTP
- OAI, WSDL, (WSRF)

Technologies

- Unix Shell
- Linux I/O
- NT Browser, Kepler Actors
- DLL / Python, Perl, Windows
- HTTP, DSpace, OpenDAP, GridFTP
- OAI, WSDL, (WSRF)

Databases

- DB2, Oracle, Sybase, Postgres, mySQL, Informix

File Systems

- Unix, NT, Mac OSX

Standards

- WSDL (WSRF)
- OAI
- HTTP
- DLL / Python, Perl, Windows
- NT Browser, Kepler Actors

Tools

- Storage Resource Broker 3.3.1
- Federation Management
- Database Abstraction
- Storage Repository Abstraction

Programming Languages

- C Library
- Java
- C++

Operating Systems

- Unix
- NT
- Mac OSX
• Extract record from its creation environment
 • Authenticity
 • Assertions by record creator
 • Static provenance information

• Import record into the preservation environment
 • Integrity
 • Assertions by archivist
 • Dynamic information context, mapping from preservation environment to external changing world

• Infrastructure independence
 • Assertion that the preservation environment has no dependencies upon a particular proprietary product, format, or protocol
• **Grid - workflow virtualization**
 - Support execution of jobs (processes) across multiple compute servers

• **Data grid - data virtualization**
 - Manage properties of a shared collection that is distributed across multiple storage servers
 - Trust virtualization - manage authentication, authorization

• **Semantic grid - information virtualization**
 - Reason across inferred attributes from multiple collections.
Preservation Environment
Reference Model

Preservation management virtualization
Preservation trust virtualization
Preservation workflow virtualization
Preservation data virtualization
Preservation knowledge virtualization
• Characterization of management policies independently of the implementation
 • Validation policies
 • Lifetime policies
 • Access policies
 • Federation policies
 • Presentation policies
 • Consistency policies
Trust Virtualization

- Management of ownership of records independently of storage systems
 - Collection owned data
 - At each remote storage system, an account ID is created under which the preservation environment stores files
- Management of roles for permitted operations
- Management of authentication of users
- Management of authorization
Workflow Virtualization

• Management of execution of preservation processes across distributed resources
 • Management of execution state
 • Management of relationships between jobs
 • Management of interactions with remote schedulers
Map from the operations used by the access method to a standard set of operations used to interact with the storage system.
Data Virtualization

Storage Repository
- Storage location
- User name
- File name
- File context (creation date, …)
- Access constraints

Data Grid
- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Control/consistency constraints

Data is organized as a shared collection
Federation Between Data Grids

Data Access Methods (Web Browser, DSpace, OAI-PMH)

Data Collection A
- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Control/consistency constraints

Data Grid

Data Collection B
- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Control/consistency constraints

Access controls and consistency constraints on cross registration of digital entities
Knowledge Virtualization

• Management of relationships between record components or between records independently of the storage systems
 • Characterization of hierarchical metadata
 • Logical relationships - OWL
 • Spatial/structural relationships
 • Temporal/procedural relationships
 • Functional relationships
Research

• Persistent objects
 • Characterize the structure of digital entities
 • Migrate the characterization forward in time
 • Parse the digital entity based on the characterization
 • DFDL / OpenOffice / Multivalent Browser
 • Separate behaviors from parsing

• Preservation workflow systems
 • Management virtualization
 • Automate application of preservation policies
 • Automate migration between preservation environments
• Preservation environment validation
 • Consistency checking of semantics and syntax of authenticity and integrity metadata
 • Validation of assertions made about distributed environment
Reference Models

- OAIS - record handling
- Preservation environment infrastructure
- Preservation management policies
- Preservation utilization properties
 - Curation
 - Implied knowledge
Evaluation Metric

- Migrate records into an alternate preservation environment while maintaining authenticity and integrity

- Generic infrastructure
 - Community standards for semantics
 - Community standards for formats
 - Community standards for services
Common requirements across:
- Data grids
- Digital libraries
- Persistent archives
- Collection building
- Analysis pipelines
- Real-time sensor streams
Reagan W. Moore
San Diego Supercomputer Center
moore@sdsc.edu
http://www.sdsc.edu/srb/